
Package: BPCells (via r-universe)
July 26, 2024

Title Single Cell Counts Matrices to PCA

Version 0.2.0

Description > Efficient operations for single cell ATAC-seq fragments
and RNA counts matrices. Interoperable with standard file
formats, and introduces efficient bit-packed formats that allow
large storage savings and increased read speeds.

License Apache-2.0 or MIT

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

URL https://bnprks.github.io/BPCells,

https://github.com/bnprks/BPCells

LinkingTo Rcpp, RcppEigen

Imports methods, grDevices, magrittr, Matrix, Rcpp, rlang, vctrs,
lifecycle, stringr, tibble, dplyr (>= 1.0.0), tidyr, readr,
ggplot2 (>= 3.4.0), scales, patchwork, scattermore, ggrepel,
RColorBrewer, hexbin

Suggests IRanges, GenomicRanges, matrixStats, igraph

Depends R (>= 3.5.0)

Repository https://bnprks.r-universe.dev

RemoteUrl https://github.com/bnprks/BPCells

RemoteRef HEAD

RemoteSha b78bc8321db802c6ebf29edc2296394f2e8587c6

Contents
add_rows . 3
all_matrix_inputs . 4
apply_by_row . 4

1

https://bnprks.github.io/BPCells
https://github.com/bnprks/BPCells

2 Contents

binarize . 5
call_peaks_tile . 6
checksum . 8
cluster_graph_leiden . 9
cluster_membership_matrix . 9
collect_features . 10
convert_matrix_type . 11
convert_to_fragments . 11
discrete_palette . 12
extend_ranges . 13
footprint . 14
fragments_identical . 15
gene_region . 15
gene_score_tiles_archr . 16
gene_score_weights_archr . 17
genomic-ranges-like . 19
human_gene_mapping . 20
import_matrix_market . 21
IterableFragments-methods . 22
IterableMatrix-methods . 23
knn_hnsw . 27
knn_to_graph . 28
marker_features . 29
match_gene_symbol . 30
matrix_R_conversion . 31
matrix_stats . 31
merge_cells . 32
merge_peaks_iterative . 33
min_scalar . 33
normalize_ranges . 34
nucleosome_counts . 35
open_fragments_10x . 35
open_matrix_10x_hdf5 . 36
open_matrix_anndata_hdf5 . 38
order_ranges . 39
peak_matrix . 39
plot_dot . 40
plot_embedding . 41
plot_fragment_length . 43
plot_read_count_knee . 44
plot_tf_footprint . 45
plot_tss_profile . 46
plot_tss_scatter . 47
prefix_cell_names . 47
qc_scATAC . 48
range_distance_to_nearest . 49
read_bed . 50
read_gtf . 51

add_rows 3

read_ucsc_chrom_sizes . 53
regress_out . 53
rotate_x_labels . 54
sctransform_pearson . 55
select_cells . 56
select_chromosomes . 56
select_regions . 57
set_trackplot_label . 57
shift_fragments . 58
subset_lengths . 59
svds . 59
tile_matrix . 61
trackplot_combine . 62
trackplot_coverage . 63
trackplot_gene . 64
trackplot_genome_annotation . 65
trackplot_loop . 66
trackplot_scalebar . 67
transpose_storage_order . 68
write_fragments_memory . 69
write_insertion_bedgraph . 70
write_matrix_memory . 71

Index 73

add_rows Broadcasting vector arithmetic

Description

Convenience functions for adding or multiplying each row / column of a matrix by a number.

Usage

add_rows(mat, vec)

add_cols(mat, vec)

multiply_rows(mat, vec)

multiply_cols(mat, vec)

Arguments

mat Matrix-like object

vec Numeric vector

4 apply_by_row

Value

Matrix-like object

all_matrix_inputs Get/set inputs to a matrix transform

Description

A matrix object can either be an input (i.e. a file on disk or a raw matrix in memory), or it can
represent a delayed operation on one or more matrices. The all_matrix_inputs() getter and
setter functions allow accessing the base-level input matrices as a list, and changing them. This is
useful if you want to re-locate data on disk without losing your transformed BPCells matrix. (Note:
experimental API; potentially subject to revisions).

Usage

all_matrix_inputs(x)

all_matrix_inputs(x) <- value

Arguments

x IterableMatrix

value List of IterableMatrix objects

Value

List of IterableMatrix objects. If a matrix m is itself an input object, then all_matrix_inputs(m)
will return list(m).

apply_by_row Apply a function to summarize rows/cols

Description

Apply a custom R function to each row/col of a BPCells matrix. This will run slower than the builtin
C++-backed functions, but will keep most of the memory benefits from disk-backed operations.

Usage

apply_by_row(mat, fun, ...)

apply_by_col(mat, fun, ...)

binarize 5

Arguments

mat IterableMatrix object
fun function(val, row, col) that takes in a row/col of values and returns a

summary output. Argument details:

1. val - Vector length (# non-zero values) with the value for each non-zero
matrix entry

2. row - one-based row index (apply_by_col: vector length (# non-zero val-
ues), apply_by_row: single integer)

3. col - one-based col index (apply_by_col: single integer, apply_by_row:
vector length (# non-zero values))

4. ... - Optional additional arguments (should not be named row, col, or val)

... Optional additional arguments passed to fun

Details

These functions require row-major matrix storage for apply_by_row and col-major storage for ap-
ply_by_col, so matrices stored in the wrong order may neeed a re-ordered copy created using
transpose_storage_order() first. This is required to be able to keep memory-usage low and
allow calculating the result with a single streaming pass of the input matrix.

If vector/matrix outputs are desired instead of lists, calling unlist(x) or do.call(cbind, x) or
do.call(rbind, x) can convert the list output.

Value

apply_by_row - A list of length nrow(matrix) with the results returned by fun() on each row

apply_by_col - A list of length ncol(matrix) with the results returned by fun() on each row

See Also

For an interface more similar to base::apply, see the BPCellsArray project. For calculating
colMeans on a sparse single cell RNA matrix it is about 8x slower than apply_by_col, due to
the base::apply interface not being sparsity-aware. (See pull request #104 for benchmarking.)

binarize Convert matrix elements to zeros and ones

Description

Binarize compares the matrix element values to the threshold value and sets the output elements to
either zero or one. By default, element values greater than the threshold are set to one; otherwise,
set to zero. When strict_inequality is set to FALSE, element values greater than or equal to the
threshold are set to one. As an alternative, the <, <=, >, and >= operators are also supported.

Usage

binarize(mat, threshold = 0, strict_inequality = TRUE)

https://github.com/Yunuuuu/BPCellsArray/
https://github.com/bnprks/BPCells/pull/104

6 call_peaks_tile

Arguments

mat IterableMatrix

threshold A numeric value that determines whether the elements of x are set to zero or
one.

strict_inequality

A logical value determining whether the comparison to the threshold is >=
(strict_inequality=FALSE) or > (strict_inequality=TRUE).

Value

binarized IterableMatrix object

call_peaks_tile Call peaks from tiles

Description

Calling peaks from a pre-set list of tiles can be much faster than using dedicated peak-calling soft-
ware like macs3. The resulting peaks are less precise in terms of exact coordinates, but should be
sufficient for most analyses.

Usage

call_peaks_tile(
fragments,
chromosome_sizes,
cell_groups = rep.int("all", length(cellNames(fragments))),
effective_genome_size = NULL,
peak_width = 200,
peak_tiling = 3,
fdr_cutoff = 0.01,
merge_peaks = c("all", "group", "none")

)

Arguments

fragments IterableFragments object
chromosome_sizes

Chromosome start and end coordinates given as GRanges, data.frame, or list.
See help("genomic-ranges-like") for details on format and coordinate sys-
tems. Required attributes:

• chr, start, end: genomic position

See read_ucsc_chrom_sizes().

cell_groups Grouping vector with one entry per cell in fragments, e.g. cluster IDs

call_peaks_tile 7

effective_genome_size

(Optional) effective genome size for poisson background rate estimation. See
deeptools for values for common genomes. Defaults to sum of chromosome
sizes, which overestimates peak significance

peak_width Width of candidate peaks

peak_tiling Number of candidate peaks overlapping each base of genome. E.g. peak_width
= 300 and peak_tiling = 3 results in candidate peaks of 300bp spaced 100bp
apart

fdr_cutoff Adjusted p-value significance cutoff

merge_peaks How to merge significant peaks with merge_peaks_iterative()

• "all" Merge the full set of peaks
• "group" Merge peaks within each group
• "none" Don’t perform any merging

Details

Peak calling steps:

1. Estimate the genome-wide expected insertions per tile based on peak_width, effective_genome_size,
and per-group read counts

2. Tile the genome with nonoverlapping tiles of size peak_width

3. For each tile and group, calculate p_value based on a Poisson model

4. Compute adjusted p-values using BH method and using the total number of tiles as the number
of hypotheses tested.

5. Repeat steps 2-4 peak_tiling times, with evenly spaced offsets

6. If merge_peaks is "all" or "group": use merge_peaks_iterative() within each group to
keep only the most significant of the overlapping candidate peaks

7. If merge_peaks is "all", perform a final round of merge_peaks_iterative(), prioritizing
each peak by its within-group significance rank

Value

tibble with peak calls and the following columns:

• chr, start, end: genome coordinates

• group: group ID that this peak was identified in

• p_val, q_val: Poission p-value and BH-corrected p-value

• enrichment: Enrichment of counts in this peak compared to a genome-wide background

https://deeptools.readthedocs.io/en/develop/content/feature/effectiveGenomeSize.html

8 checksum

checksum Calculate the MD5 checksum of an IterableMatrix

Description

Calculate the MD5 checksum of an IterableMatrix and return the checksum in hexidecimal format.

Usage

checksum(matrix)

Arguments

matrix IterableMatrix object

Details

checksum() converts the non-zero elements of the sparse input matrix to double precision, con-
catenates each element value with the element row and column index words, and uses these 16-byte
blocks along with the matrix dimensions and row and column names to calculate the checksum.
The checksum value depends on the storage order so column- and row-order matrices with the
same element values give different checksum values. checksum() uses element and index val-
ues in little-endian CPU storage order. It converts to little-endian order on big-endian architecture
although this has not been tested.

Value

MD5 checksum string in hexidecimal format.

Examples

library(Matrix)
library(BPCells)
m1 <- matrix(seq(1,12), nrow=3)
m2 <- as(m1, 'dgCMatrix')
m3 <- as(m2, 'IterableMatrix')
checksum(m3)

cluster_graph_leiden 9

cluster_graph_leiden Cluster an adjacency matrix

Description

Cluster an adjacency matrix

Usage

cluster_graph_leiden(snn, resolution = 0.001, seed = 12531, ...)

cluster_graph_louvain(snn, resolution = 1, seed = 12531)

cluster_graph_seurat(snn, resolution = 0.8, ...)

Arguments

snn Symmetric adjacency matrix (dgCMatrix) output from e.g. knn_to_snn_graph.
Only the lower triangle is used

resolution Resolution parameter. Higher values result in more clusters

seed Random seed for clustering initialization

... Additional arguments to underlying clustering function

Details

cluster_graph_leiden: Leiden graph clustering algorithm igraph::cluster_leiden()

cluster_graph_louvain: Louvain graph clustering algorithm igraph::cluster_louvain()

cluster_graph_seurat: Seurat’s clustering algorithm Seurat::FindClusters()

Value

Factor vector containing the cluster assignment for each cell.

cluster_membership_matrix

Convert grouping vector to sparse matrix

Description

Converts a vector of membership IDs into a sparse matrix

Usage

cluster_membership_matrix(groups, group_order = NULL)

10 collect_features

Arguments

groups Vector with one entry per cell, specifying the cell’s group

group_order Optional vector listing ordering of groups

Value

cell x group matrix where an entry is 1 when a cell is in a given group

collect_features Collect features for plotting

Description

Helper function for data on features to plot from a diverse set of data sources.

Usage

collect_features(
source,
features = NULL,
gene_mapping = human_gene_mapping,
n = 1

)

Arguments

source Matrix or data frame to pull features from, or a vector of feature values for a
single feature. For a matrix, the features must be rows.

features Character vector of features names to plot if source is not a vector.

gene_mapping An optional vector for gene name matching with match_gene_symbol(). Ig-
nored if source is a data frame.

n Internal-use parameter marking the number of nested calls. This is used for
finding the name of the "source" input variable from the caller’s perspective

Details

If source is a data.frame, features will be drawn from the columns. If source is a matrix object
(IterableMatrix, dgCMatrix, or matrix), features will be drawn from rows.

Value

Data frame with one column for each feature requested

convert_matrix_type 11

convert_matrix_type Convert the type of a matrix

Description

Convert the type of a matrix

Usage

convert_matrix_type(matrix, type = c("uint32_t", "double", "float"))

Arguments

matrix IterableMatrix object input

type One of uint32_t (unsigned 32-bit integer), float (32-bit real number), or double
(64-bit real number)

Value

IterableMatrix object

convert_to_fragments Convert between BPCells fragments and R objects.

Description

BPCells fragments can be interconverted with GRanges and data.frame R objects. The main con-
version method is R’s builtin as() function, though the convert_to_fragments() helper is also
available. For all R objects except GRanges, BPCells assumes a 0-based, end-exclusive coordinate
system. (See genomic-ranges-like reference for details)

Usage

Convert from R to BPCells
convert_to_fragments(x, zero_based_coords = !is(x, "GRanges"))
as(x, "IterableFragments")

Convert from BPCells to R
as.data.frame(bpcells_fragments)
as(bpcells_fragments, "data.frame")
as(bpcells_fragments, "GRanges")

12 discrete_palette

Arguments

x Fragment coordinates given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• cell_id: cell barcodes or unique identifiers as string or factor

zero_based_coords

Whether to convert the ranges from a 1-based end-inclusive coordinate system
to a 0-based end-exclusive coordinate system. Defaults to true for GRanges and
false for other formats (see this archived UCSC blogpost)

Value

convert_to_fragments(): IterableFragments object

discrete_palette Color palettes

Description

These color palettes are derived from the ArchR color palettes, and provide large sets of distin-
guishable colors

Usage

discrete_palette(name, n = 1)

continuous_palette(name)

Arguments

name Name of the color palette. Valid discrete palettes are: stallion, calm, kelly,
bear, ironMan, circus, paired, grove, summerNight, and captain. Valid
continuous palettes are bluePurpleDark

n Minimum number of colors needed

Details

If the requested number of colors is too large, a new palette will be constructed via interpolation
from the requested palette

Value

Character vector of hex color codes

https://web.archive.org/web/20210920203703/http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

extend_ranges 13

extend_ranges Extend genome ranges in a strand-aware fashion.

Description

Extend genome ranges in a strand-aware fashion.

Usage

extend_ranges(
ranges,
upstream = 0,
downstream = 0,
metadata_cols = c("strand"),
chromosome_sizes = NULL,
zero_based_coords = !is(ranges, "GRanges")

)

Arguments

ranges Genomic regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

upstream Number of bases to extend each range upstream (negative to shrink width)

downstream Number of bases to extend each range downstream (negative to shrink width)

metadata_cols Optional list of metadata columns to require & extract

chromosome_sizes

(optional) Size of chromosomes as a genomic-ranges object

zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

Details

Note that ranges will be blocked from extending past the beginning of the chromosome (base 0),
and if chromosome_sizes is given then they will also be blocked from extending past the end of
the chromosome

14 footprint

footprint Get footprints around a set of genomic coordinates

Description

Get footprints around a set of genomic coordinates

Usage

footprint(
fragments,
ranges,
zero_based_coords = !is(ranges, "GRanges"),
cell_groups = rlang::rep_along(cellNames(fragments), "all"),
cell_weights = rlang::rep_along(cell_groups, 1),
flank = 125L,
normalization_width = flank%/%10L

)

Arguments

fragments IterableFragments object

ranges Footprint centers given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand

"+" strand ranges will footprint around the start coordinate, and "-" strand ranges
around the end coordinate.

zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

cell_groups Character or factor assigning a group to each cell, in order of cellNames(fragments)

cell_weights Numeric vector assigning weight factors (e.g. inverse of total reads) to each cell,
in order of cellNames(fragments)

flank Number of flanking basepairs to include on either side of the motif
normalization_width

Number of basepairs at the upstream + downstream extremes to use for calcu-
lating enrichment

Value

tibble::tibble() with columns group, position, and count, enrichment

fragments_identical 15

fragments_identical Check if two fragments objects are identical

Description

Check if two fragments objects are identical

Usage

fragments_identical(fragments1, fragments2)

Arguments

fragments1 First IterableFragments to compare

fragments2 Second IterableFragments to compare

Value

boolean for whether the fragments objects are identical

gene_region Find gene region

Description

Conveniently look up the region of a gene by gene symbol. The value returned by this function
can be used as the region argument for trackplot functions such as trackplot_coverage() or
trackplot_gene()

Usage

gene_region(
genes,
gene_symbol,
extend_bp = c(10000, 10000),
gene_mapping = human_gene_mapping

)

Arguments

genes Transcipt features given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand
• gene_name: Symbol or gene ID

16 gene_score_tiles_archr

gene_symbol Name of gene symbol or ID
extend_bp Bases to extend region upstream and downstream of gene. If length 1, exten-

sion is symmetric. If length 2, provide upstream extension then downstream
extension as positive distances.

gene_mapping Named vector where names are gene symbols or IDs and values are canonical
gene symbols

Value

List of chr, start, end positions for use with trackplot functions.

gene_score_tiles_archr

Calculate gene-tile distances for ArchR gene activities

Description

ArchR-style gene activity scores are based on a weighted sum of each tile according to the signed
distance from the tile to a gene body. This function calculates the signed distances according to
ArchR’s default parameters.

Usage

gene_score_tiles_archr(
genes,
chromosome_sizes = NULL,
tile_width = 500,
addArchRBug = FALSE

)

Arguments

genes Gene coordinates given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand

chromosome_sizes

(optional) Size of chromosomes as a genomic-ranges object
tile_width Size of tiles to consider
addArchRBug Replicate ArchR bug in handling nested genes

Details

ArchR’s tile distance algorithm works as follows

1. Genes are extended 5kb upstream
2. Genes are linked to any tiles 1kb-100kb upstream + downstream, but tiles beyond a neighbor-

ing gene are not considered

gene_score_weights_archr 17

Value

Tibble with one range per tile, with additional metadata columns gene_idx (row index of the gene
this tile corresponds to) and distance.

Distance is a signed distance calculated such that if the tile has a smaller start coordinate than
the gene and the gene is on the + strand, distance will be negative. The distance of adjacent but
non-overlapping regions is 1bp, counting up from there.

gene_score_weights_archr

Calculate GeneActivityScores

Description

Gene activity scores can be calculated as a distance-weighted sum of per-tile accessibility. The
tile weights for each gene can be represented as a sparse matrix of dimension genes x tiles. If we
multiply this weight matrix by a corresponding tile matrix (tiles x cells), then we can get a gene
activity score matrix of genes x cells. gene_score_weights_archr() calculates the weight matrix
(best if you have a pre-computed tile matrix), while gene_score_archr() provides a easy-to-use
wrapper.

Usage

gene_score_weights_archr(
genes,
chromosome_sizes,
blacklist = NULL,
tile_width = 500,
gene_name_column = "gene_id",
addArchRBug = FALSE

)

gene_score_archr(
fragments,
genes,
chromosome_sizes,
blacklist = NULL,
tile_width = 500,
gene_name_column = "gene_id",
addArchRBug = FALSE,
tile_max_count = 4,
scale_factor = 10000,
tile_matrix_path = tempfile(pattern = "gene_score_tile_mat")

)

18 gene_score_weights_archr

Arguments

genes Gene coordinates given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand

chromosome_sizes

Chromosome start and end coordinates given as GRanges, data.frame, or list.
See help("genomic-ranges-like") for details on format and coordinate sys-
tems. Required attributes:

• chr, start, end: genomic position

See read_ucsc_chrom_sizes().

blacklist Regions to exclude from calculations, given as GRanges, data.frame, or list. See
help("genomic-ranges-like") for details on format and coordinate systems.
Required attributes:

• chr, start, end: genomic position

tile_width Size of tiles to consider
gene_name_column

If not NULL, a column name of genes to use as row names

addArchRBug Replicate ArchR bug in handling nested genes

fragments Input fragments object

tile_max_count Maximum value in the tile counts matrix. If not null, tile counts higher than
this will be clipped to tile_max_count. Equivalent to ceiling argument of
ArchR::addGeneScoreMatrix()

scale_factor If not null, counts for each cell will be scaled to sum to scale_factor. Equiv-
alent to scaleTo argument of ArchR::addGeneScoreMatrix()

tile_matrix_path

Path of a directory where the intermediate tile matrix will be saved

Details

gene_score_weights_archr:

Given a set of tile coordinates and distances returned by gene_score_tiles_archr(), calculate a
weight matrix of dimensions genes x tiles. This matrix can be multiplied with a tile matrix to obtain
ArchR-compatible gene activity scores.

Value

gene_score_weights_archr

Weight matrix of dimension genes x tiles

gene_score_archr

Gene score matrix of dimension genes x cells.

genomic-ranges-like 19

genomic-ranges-like Genomic range formats

Description

BPCells accepts a flexible set of genomic ranges-like objects as input, either GRanges, data.frame,
lists, or character vectors. These objects must specify chromosome, start, and end coordinates
along with optional metadata about each range. With the exception of GenomicRanges::GRanges
objects, BPCells assumes all objects use a zero-based, end-exclusive coordinate system (see below
for details).

Valid Range-like objects:
BPCells can interpret the following types as ranges:

• list(), data.frame(), with columns:
– chr: Character or factor of chromosome names
– start: Start coordinates (0-based)
– end: End coordinates (exclusive)
– (optional) strand: "+"/"-" or TRUE/FALSE for pos/neg strand
– (optional) Additional metadata as named list entries or data.frame columns

• GenomicRanges::GRanges

– start(x) is interpreted as a 1-based start coordinate
– end(x) is interpreted as an inclusive end coordinate
– strand(x): "*" entries are interpeted as postive strand
– (optional) mcols(x) holds additional metadata

• character

– Given in format "chr1:1000-2000" or "chr1:1,000-2,000"
– Uses 0-based, end-exclusive coordinate system
– Cannot be used for ranges where additional metadata is required

Range coordinate systems:
There are two main conventions for the coordinate systems:
One-based, end-inclusive ranges

• The first base of a chromosome is numbered 1
• The last base in a range is equal to the end coordinate
• e.g. 1-5 describes the first 5 bases of the chromosome
• Used in formats such as SAM, GTF
• In BPCells, used when reading or writing GenomicRanges::GRanges objects

Zero-based, end-exclusive ranges
• The first base of a chromosome is numbered 0
• The last base in a range is one less than the end coordinate
• e.g. 0-5 describes the first 5 bases of the chromosome
• Used in formats such as BAM, BED
• In BPCells, used for all other range objects

20 human_gene_mapping

human_gene_mapping Gene Symbol Mapping data

Description

Mapping of the canonical gene symbols corresponding to each unambiguous alias, previous symbol,
ensembl ID, or entrez ID.

Usage

human_gene_mapping

mouse_gene_mapping

Format

human_gene_mapping

A named character vector. Names are aliases or IDs and values are the corresponding canonical
gene symbol

mouse_gene_mapping

A named character vector. Names are aliases or IDs and values are the corresponding canonical
gene symbol

Details

See the source code in data-raw/human_gene_mapping.R and data-raw/mouse_gene_mapping.R
for exactly how these mappings were made.

Source

human_gene_mapping

http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/non_alt_loci_set.txt

mouse_gene_mapping

http://www.informatics.jax.org/downloads/reports/MGI_EntrezGene.rpt http://www.informatics.
jax.org/downloads/reports/MRK_ENSEMBL.rpt

http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/non_alt_loci_set.txt
http://www.informatics.jax.org/downloads/reports/MGI_EntrezGene.rpt
http://www.informatics.jax.org/downloads/reports/MRK_ENSEMBL.rpt
http://www.informatics.jax.org/downloads/reports/MRK_ENSEMBL.rpt

import_matrix_market 21

import_matrix_market Import MatrixMarket files

Description

Read a sparse matrix from a MatrixMarket file. This is a text-based format used by 10x, Parse, and
others to store sparse matrices. Format details on the NIST website.

Usage

import_matrix_market(
mtx_path,
outdir = tempfile("matrix_market"),
row_names = NULL,
col_names = NULL,
row_major = FALSE,
tmpdir = tempdir(),
load_bytes = 4194304L,
sort_bytes = 1073741824L

)

import_matrix_market_10x(
mtx_dir,
outdir = tempfile("matrix_market"),
feature_type = NULL,
row_major = FALSE,
tmpdir = tempdir(),
load_bytes = 4194304L,
sort_bytes = 1073741824L

)

Arguments

mtx_path Path of mtx or mtx.gz file

outdir Directory to store the output

row_names Character vector of row names

col_names Character vector of col names

row_major If true, store the matrix in row-major orientation

tmpdir Temporary directory to use for intermediate storage

load_bytes The minimum contiguous load size during the merge sort passes

sort_bytes The amount of memory to allocate for re-sorting chunks of entries

mtx_dir Directory holding matrix.mtx.gz, barcodes.tsv.gz, and features.tsv.gz

feature_type String or vector of feature types to include. (cellranger 3.0 and newer)

https://math.nist.gov/MatrixMarket/formats.html

22 IterableFragments-methods

Details

Import MatrixMarket mtx files to the BPCells format. This implementation ensures fixed memory
usage even for very large inputs by doing on-disk sorts. It will be much slower than hdf5 inputs, so
only use MatrixMarket format when absolutely necessary.

As a rough speed estimate, importing the 17GB Parse 1M PBMC DGE_1M_PBMC.mtx file takes about
4 minutes and 1.3GB of RAM, producing a compressed output matrix of 1.5GB. mtx.gz files will
be slower to import due to gzip decompression.

When importing from 10x mtx files, the row and column names can be read automatically using the
import_matrix_market_10x() convenience function.

Value

MatrixDir object with the imported matrix

IterableFragments-methods

IterableFragments methods

Description

Methods for IterableFragments objects

Usage

S4 method for signature 'IterableFragments'
show(object)

cellNames(x)

cellNames(x, ...) <- value

chrNames(x)

chrNames(x, ...) <- value

Arguments

object IterableFragments object

x an IterableFragments object

value Character vector of new names

Details

• cellNames<- It is only possible to replace names, not add new names.

• chrNames<- It is only possible to replace names, not add new names.

https://www.parsebiosciences.com/datasets/pbmc/single-cell-rna-sequencing-of-1-million-human-cells-in-a-single-experiment

IterableMatrix-methods 23

Value

• cellNames() Character vector of cell names, or NULL if none are known

• chrNames(): Character vector of chromosome names, or NULL if none are known

Functions

• show(IterableFragments): Print IterableFragments

• cellNames(): Get cell names

• cellNames(x, ...) <- value: Set cell names

• chrNames(): Set chromosome names

• chrNames(x, ...) <- value: Set chromosome names

IterableMatrix-methods

IterableMatrix methods

Description

Generic methods and built-in functions for IterableMatrix objects

Usage

matrix_type(x)

storage_order(x)

S4 method for signature 'IterableMatrix'
show(object)

S4 method for signature 'IterableMatrix'
t(x)

S4 method for signature 'IterableMatrix,matrix'
x %*% y

S4 method for signature 'IterableMatrix'
rowSums(x)

S4 method for signature 'IterableMatrix'
colSums(x)

S4 method for signature 'IterableMatrix'
rowMeans(x)

S4 method for signature 'IterableMatrix'

24 IterableMatrix-methods

colMeans(x)

colVars(
x,
rows = NULL,
cols = NULL,
na.rm = FALSE,
center = NULL,
...,
useNames = TRUE

)

rowVars(
x,
rows = NULL,
cols = NULL,
na.rm = FALSE,
center = NULL,
...,
useNames = TRUE

)

rowMaxs(x, rows = NULL, cols = NULL, na.rm = FALSE, ..., useNames = TRUE)

colMaxs(x, rows = NULL, cols = NULL, na.rm = FALSE, ..., useNames = TRUE)

S4 method for signature 'IterableMatrix'
log1p(x)

log1p_slow(x)

S4 method for signature 'IterableMatrix'
expm1(x)

expm1_slow(x)

S4 method for signature 'IterableMatrix,numeric'
e1 ^ e2

S4 method for signature 'numeric,IterableMatrix'
e1 < e2

S4 method for signature 'IterableMatrix,numeric'
e1 > e2

S4 method for signature 'numeric,IterableMatrix'
e1 <= e2

IterableMatrix-methods 25

S4 method for signature 'IterableMatrix,numeric'
e1 >= e2

S4 method for signature 'IterableMatrix'
round(x, digits = 0)

S4 method for signature 'IterableMatrix,numeric'
e1 * e2

S4 method for signature 'IterableMatrix,numeric'
e1 + e2

S4 method for signature 'IterableMatrix,numeric'
e1 / e2

S4 method for signature 'IterableMatrix,numeric'
e1 - e2

Arguments

x IterableMatrix/dgCMatrix object

object IterableMatrix object

y matrix

Value

• t() Transposed object

• x %*% y: dense matrix result

• rowSums(): vector of row sums

• colSums(): vector of col sums

• rowMeans(): vector of row means

• colMeans(): vector of col means

• colVars(): vector of col variance

• rowVars(): vector of row variance

• rowMaxs(): vector of maxes for every row

• colMaxs(): vector of column maxes

26 IterableMatrix-methods

Functions

• matrix_type(): Get the matrix data type (mat_uint32_t, mat_float, or mat_double for now)

• storage_order(): Get the matrix storage order ("row" or "col")

• show(IterableMatrix): Display an IterableMatrix

• t(IterableMatrix): Transpose an IterableMatrix

• x %*% y: Multiply by a dense matrix

• rowSums(IterableMatrix): Calculate rowSums

• colSums(IterableMatrix): Calculate colSums

• rowMeans(IterableMatrix): Calculate rowMeans

• colMeans(IterableMatrix): Calculate colMeans

• colVars(): Calculate colVars (replacement for matrixStats::colVars())

• rowVars(): Calculate rowVars (replacement for matrixStats::rowVars())

• rowMaxs(): Calculate rowMaxs (replacement for matrixStats::rowMaxs())

• colMaxs(): Calculate colMax (replacement for matrixStats::colMax())

• log1p(IterableMatrix): Calculate log(x + 1)

• log1p_slow(): Calculate log(x + 1) (non-SIMD version)

• expm1(IterableMatrix): Calculate exp(x) - 1

• expm1_slow(): Calculate exp(x) - 1 (non-SIMD version)

• e1^e2: Calculate x^y (elementwise)

• e1 < e2: Binarize matrix according to numeric < matrix comparison

• e1 > e2: Binarize matrix according to matrix > numeric comparison

• e1 <= e2: Binarize matrix according to numeric <= matrix comparison

• e1 >= e2: Binarize matrix according to matrix >= numeric comparison

• round(IterableMatrix): round to nearest integer (digits must be 0)

• e1 * e2: Multiply by a constant, or multiply rows by a vector length nrow(mat)

• e1 + e2: Add a constant, or row-wise addition with a vector length nrow(mat)

• e1 / e2: Divide by a constant, or divide rows by a vector length nrow(mat)

• e1 - e2: Subtract a constant, or row-wise subtraction with a vector length nrow(mat)

knn_hnsw 27

knn_hnsw Get a knn matrix from reduced dimensions

Description

Search for approximate nearest neighbors between cells in the reduced dimensions (e.g. PCA), and
return the k nearest neighbors (knn) for each cell. Optionally, we can find neighbors between two
separate sets of cells by utilizing both data and query.

Usage

knn_hnsw(
data,
query = NULL,
k = 10,
metric = c("euclidean", "cosine"),
verbose = TRUE,
threads = 1,
ef = 100

)

knn_annoy(
data,
query = data,
k = 10,
metric = c("euclidean", "cosine", "manhattan", "hamming"),
n_trees = 50,
search_k = -1

)

Arguments

data cell x dims matrix for reference dataset

query cell x dims matrix for query dataset (optional)

k number of neighbors to calculate

metric distance metric to use

verbose whether to print progress information during search

threads Number of threads to use. Note that result is non-deterministic if threads > 1

ef ef parameter for RccppHNSW::hnsw_search. Increase for slower search but
improved accuracy

n_trees Number of trees during index build time. More trees gives higher accuracy

search_k Number of nodes to inspect during the query, or -1 for default value. Higher
number gives higher accuracy

28 knn_to_graph

Details

knn_hnsw: Use RcppHNSW as knn engine

knn_annoy: Use RcppAnnoy as knn engine

Value

List of 2 matrices – idx for cell x K neighbor indices, dist for cell x K neighbor distances. If no query
is given, nearest neighbors are found mapping the data matrix to itself, prohibiting self-neighbors

knn_to_graph K Nearest Neighbor (KNN) Graph

Description

Convert a KNN object (e.g. returned by knn_hnsw() or knn_annoy()) into a graph. The graph is
represented as a sparse adjacency matrix.

Usage

knn_to_graph(knn, use_weights = FALSE, self_loops = TRUE)

knn_to_snn_graph(
knn,
min_val = 1/15,
self_loops = FALSE,
return_type = c("matrix", "list")

)

knn_to_geodesic_graph(knn, return_type = c("matrix", "list"), threads = 0L)

Arguments

knn List of 2 matrices – idx for cell x K neighbor indices, dist for cell x K neighbor
distances

use_weights boolean for whether to replace all distance weights with 1

self_loops Whether to allow self-loops in the output graph

min_val minimum jaccard index between neighbors. Values below this will round to 0

return_type Whether to return a sparse adjacency matrix or an edge list

threads Number of threads to use during calculations

marker_features 29

Details

knn_to_graph Create a knn graph

knn_to_snn_graph Convert a knn object into a shared nearest neighbors adjacency matrix. This
follows the algorithm that Seurat uses to compute SNN graphs

knn_to_geodesic_graph Convert a knn object into an undirected weighted graph, using the same
geodesic distance estimation method as the UMAP package. This matches the output of umap._umap.fuzzy_simplicial_set
from the umap-learn python package, used by default in scanpy.pp.neighbors. Because this
only re-weights and symmetrizes the KNN graph, it will usually use less memory and return a
sparser graph than knn_to_snn_graph which computes 2nd-order neighbors. Note: when cells
don’t have themselves listed as the nearest neighbor, results may differ slightly from umap._umap.fuzzy_simplicial_set,
which assumes self is always successfully found in the approximate nearest neighbor search.

Value

knn_to_graph Sparse matrix (dgCMatrix) where mat[i,j] = distance from cell i to cell j, or 0 if
cell j is not in the K nearest neighbors of i

knn_to_snn_graph

• return_type == "matrix": Sparse matrix (dgCMatrix) where mat[i,j] = jaccard index of
the overlap in nearest neigbors between cell i and cell j, or 0 if the jaccard index is < min_val.
Only the lower triangle is filled in, which is compatible with the BPCells clustering methods

• return_type == "list": List of 3 equal-length vectors i, j, and weight, along with an in-
teger dim. These correspond to the rows, cols, and values of non-zero entries in the lower
triangle adjacency matrix. dim is the total number of vertices (cells) in the graph

knn_to_geodesic_graph

• return_type == "matrix": Sparse matrix (dgCMatrix) where mat[i,j] = normalized simi-
larity between cell i and cell j. Only the lower triangle is filled in, which is compatible with
the BPCells clustering methods

• return_type == "list": List of 3 equal-length vectors i, j, and weight, along with an in-
teger dim. These correspond to the rows, cols, and values of non-zero entries in the lower
triangle adjacency matrix. dim is the total number of vertices (cells) in the graph

marker_features Test for marker features

Description

Given a features x cells matrix, perform one-vs-all differential tests to find markers.

Usage

marker_features(mat, groups, method = "wilcoxon")

30 match_gene_symbol

Arguments

mat IterableMatrix object of dimensions features x cells

groups Character/factor vector of cell groups/clusters. Length #cells

method Test method to use. Current options are:

• wilcoxon: Wilconxon rank-sum test a.k.a Mann-Whitney U test

Details

Tips for using the values from this function:

• Use dplyr::mutate() to add columns for e.g. adjusted p-value and log fold change.

• Use dplyr::filter() to get only differential genes above some given threshold

• To get adjusted p-values, use R p.adjust(), recommended method is "BH"

• To get log2 fold change: if your input matrix was already log-transformed, calculate (foreground_mean
- background_mean)/log(2). If your input matrix was not log-transformed, calculate log2(forground_mean/background_mean)

Value

tibble with the following columns:

• foreground: Group ID used for the foreground

• background: Group ID used for the background (or NA if comparing to rest of cells)

• feature: ID of the feature

• p_val_raw: Unadjusted p-value for differential test

• foreground_mean: Average value in the foreground group

• background_mean: Average value in the background group

match_gene_symbol Gene symbol matching

Description

Correct alias gene symbols, Ensembl IDs, and Entrez IDs to canonical gene symbols. This is useful
for matching gene names between different datasets which might not always use the same gene
naming conventions.

Usage

match_gene_symbol(query, subject, gene_mapping = human_gene_mapping)

canonical_gene_symbol(query, gene_mapping = human_gene_mapping)

matrix_R_conversion 31

Arguments

query Character vector of gene symbols or IDs

subject Vector of gene symbols or IDs to index into

gene_mapping Named vector where names are gene symbols or IDs and values are canonical
gene symbols

Value

match_gene_symbol
Integer vector of indices v such that subject[v] corresponds to the gene symbols in query

canonical_gene_symbol
Character vector of canonical gene symbols for each symbol in query

matrix_R_conversion Convert between BPCells matrix and R objects.

Description

BPCells matrices can be interconverted with Matrix package dgCMatrix sparse matrices, as well as
base R dense matrices (though this may result in high memory usage for large matrices)

Usage

Convert to R from BPCells
as(bpcells_mat, "dgCMatrix") # Sparse matrix conversion
as.matrix(bpcells_mat) # Dense matrix conversion

Convert to BPCells from R
as(dgc_mat, "IterableMatrix")

matrix_stats Calculate matrix stats

Description

Calculate matrix stats

Usage

matrix_stats(
matrix,
row_stats = c("none", "nonzero", "mean", "variance"),
col_stats = c("none", "nonzero", "mean", "variance"),
threads = 0L

)

32 merge_cells

Arguments

matrix Input matrix object

row_stats Which row statistics to compute

col_stats Which col statistics to compute

threads Number of threads to use during execution

Details

The statistics will be calculated in a single pass over the matrix, so this method is desirable to use
for efficiency purposes compared to the more standard rowMeans or colMeans if multiple statistics
are needed. The stats are ordered by complexity: nonzero, mean, then variance. All less complex
stats are calculated in the process of calculating a more complicated stat. So to calculate mean and
variance simultaneously, just ask for variance, which will compute mean and nonzero counts as a
side-effect

Value

List of row_stats: matrix of n_stats x n_rows, col_stats: matrix of n_stats x n_cols

merge_cells Merge cells into pseudobulks

Description

Peak and tile matrix calculations can be sped up by reducing the number of cells. For cases where
the outputs are going to be added together afterwards, this can provide a performance improvement

Usage

merge_cells(fragments, cell_groups)

Arguments

fragments Input fragments object

cell_groups Character or factor vector providing a group for each cell. Ordering is the same
as cellNames(fragments)

merge_peaks_iterative 33

merge_peaks_iterative Merge peaks

Description

Merge peaks according to ArchR’s iterative merging algorithm. More details on the ArchR website

Usage

merge_peaks_iterative(peaks)

Arguments

peaks Peaks given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

Must be ordered by priority and have columns chr, start, end.

Details

Properties of merged peaks:

• No peaks in the merged set overlap

• Peaks are prioritized according to their order in the original input

• The output peaks are a subset of the input peaks, with no peak boundaries changed

Value

tibble::tibble() with a nonoverlapping subset of the rows in peaks. All metadata columns are
preserved

min_scalar Elementwise minimum

Description

min_scalar: Take minumum with a global constant

min_by_row: Take the minimum with a per-row constant

min_by_col: Take the minimum with a per-col constant

https://www.archrproject.com/bookdown/the-iterative-overlap-peak-merging-procedure.html

34 normalize_ranges

Usage

min_scalar(mat, val)

min_by_row(mat, vals)

min_by_col(mat, vals)

Arguments

mat IterableMatrix
val Single positive numeric value

Details

Take the minimum value of a matrix with a per-row, per-col, or global constant. This constant must
be >0 to preserve sparsity of the matrix. This has the effect of capping the maximum value in the
matrix.

Value

IterableMatrix

normalize_ranges Normalize an object representing genomic ranges

Description

Normalize an object representing genomic ranges

Usage

normalize_ranges(
ranges,
metadata_cols = character(0),
zero_based_coords = !is(ranges, "GRanges"),
n = 1

)

Arguments

ranges Genomic regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
metadata_cols Optional list of metadata columns to require & extract
zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

nucleosome_counts 35

Value

data frame with zero-based coordinates, and elements chr (factor), start (int), and end (int). If
ranges does not have chr level information, chr levels are the sorted unique values of chr.

If strand is in metadata_cols, then the output strand element will be TRUE for positive strand, and
FALSE for negative strand. (Converted from a character vector of "+"/"-" if necessary)

nucleosome_counts Count fragments by nucleosomal size

Description

Count fragments by nucleosomal size

Usage

nucleosome_counts(fragments, nucleosome_width = 147)

Arguments

fragments Fragments object
nucleosome_width

Integer cutoff to use as nucleosome width

Details

Shorter than nucleosome_width is subNucleosomal, nucleosome_width to 2*nucleosome_width-1
is monoNucleosomal, and anything longer is multiNucleosomal. The sum of all fragments is given
as nFrags

Value

List with names subNucleosomal, monoNucleosomal, multiNucleosomal, and nFrags, contain-
ing the count vectors of fragments in each class per cell.

open_fragments_10x Read/write a 10x fragments file

Description

10x fragment files come in a bed-like format, with columns chr, start, end, cell_id, and pcr_duplicates.
Unlike a standard bed format, the format from cellranger has an inclusive end-coordinate, meaning
the end coordinate itself is what should be counted as the tagmentation site, rather than offset by 1.

36 open_matrix_10x_hdf5

Usage

open_fragments_10x(path, comment = "#", end_inclusive = TRUE)

write_fragments_10x(
fragments,
path,
end_inclusive = TRUE,
append_5th_column = FALSE

)

Arguments

path File path (e.g. fragments.tsv or fragments.tsv.gz)

comment Skip lines at beginning of file which start with comment string

end_inclusive Whether the end coordinate of the bed is inclusive – i.e. there was an insertion
at the end coordinate rather than the base before the end coordinate. This is the
10x default, though it’s not quite standard for the bed file format.

fragments Input fragments object

append_5th_column

Whether to include 5th column of all 0 for compatibility with 10x fragment file
outputs (defaults to 4 columns chr,start,end,cell)

Details

open_fragments_10x

No disk operations will take place until the fragments are used in a function

write_fragments_10x

Fragments will be written to disk immediately, then returned in a readable object.

Value

10x fragments file object

open_matrix_10x_hdf5 Read/write a 10x feature matrix

Description

Read/write a 10x feature matrix

open_matrix_10x_hdf5 37

Usage

open_matrix_10x_hdf5(path, feature_type = NULL, buffer_size = 16384L)

write_matrix_10x_hdf5(
mat,
path,
barcodes = colnames(mat),
feature_ids = rownames(mat),
feature_names = rownames(mat),
feature_types = "Gene Expression",
feature_metadata = list(),
buffer_size = 16384L,
chunk_size = 1024L,
gzip_level = 0L,
type = c("uint32_t", "double", "float", "auto")

)

Arguments

path Path to the hdf5 file on disk

feature_type Optional selection of feature types to include in output matrix. For multiome
data, the options are "Gene Expression" and "Peaks". This option is only com-
patible with files from cellranger 3.0 and newer.

buffer_size For performance tuning only. The number of items to be buffered in memory
before calling writes to disk.

mat IterableMatrix

barcodes Vector of names for the cells

feature_ids Vector of IDs for the features

feature_names Vector of names for the features

feature_types String or vector of feature types
feature_metadata

Named list of additional metadata vectors to store for each feature

chunk_size For performance tuning only. The chunk size used for the HDF5 array storage.

gzip_level Gzip compression level. Default is 0 (no compression)

type Data type of the output matrix. Default is uint32_t to match a matrix of 10x
UMI counts. Non-integer data types include float and double. If auto, will
use the data type of mat.

Details

The 10x format makes use of gzip compression for the matrix data, which can slow down read
performance. Consider writing into another format if the read performance is important to you.

Input matrices must be in column-major storage order, and if the rownames and colnames are not
set, names must be provided for the relevant metadata parameters. Some of the metadata parameters
are not read by default in BPCells, but it is possible to export them for use with other tools.

38 open_matrix_anndata_hdf5

Value

BPCells matrix object

open_matrix_anndata_hdf5

Read/write AnnData matrix

Description

Read or write a sparse matrix from an anndata hdf5 file. These functions will automatically trans-
pose matrices when converting to/from the AnnData format. This is because the AnnData con-
vention stores cells as rows, whereas the R convention stores cells as columns. If this behavior is
undesired, call t() manually on the matrix inputs and outputs of these functions.

Usage

open_matrix_anndata_hdf5(path, group = "X", buffer_size = 16384L)

write_matrix_anndata_hdf5(
mat,
path,
group = "X",
buffer_size = 16384L,
chunk_size = 1024L,
gzip_level = 0L

)

Arguments

path Path to the hdf5 file on disk

group The group within the hdf5 file to write the data to. If writing to an existing hdf5
file this group must not already be in use

buffer_size For performance tuning only. The number of items to be buffered in memory
before calling writes to disk.

chunk_size For performance tuning only. The chunk size used for the HDF5 array storage.

gzip_level Gzip compression level. Default is 0 (no compression)

Value

AnnDataMatrixH5 object, with cells as the columns.

order_ranges 39

order_ranges Get end-sorted ordering for genome ranges

Description

Use this function to order regioins prior to calling peak_matrix() or tile_matrix().

Usage

order_ranges(ranges, chr_levels, sort_by_end = TRUE)

Arguments

ranges Genomic regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

chr_levels Ordering of chromosome names

sort_by_end If TRUE (defualt), sort by (chr, end, start). Else sort by (chr, start, end)

Value

Numeric vector analagous to the order function. Provides an index selection that will reorder the
input ranges to be sorted by chr, end, start

peak_matrix Calculate ranges x cells overlap matrix

Description

Calculate ranges x cells overlap matrix

Usage

peak_matrix(
fragments,
ranges,
mode = c("insertions", "fragments", "overlaps"),
zero_based_coords = !is(ranges, "GRanges"),
explicit_peak_names = TRUE

)

40 plot_dot

Arguments

fragments Input fragments object. Must have cell names and chromosome names defined

ranges Peaks/ranges to overlap, given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

mode Mode for counting peak overlaps. (See "value" section for more details)

zero_based_coords

Whether to convert the ranges from a 1-based end-inclusive coordinate system
to a 0-based end-exclusive coordinate system. Defaults to true for GRanges and
false for other formats (see this archived UCSC blogpost)

explicit_peak_names

Boolean for whether to add rownames to the output matrix in format e.g chr1:500-
1000, where start and end coords are given in a 0-based coordinate system. Note
that either way, peak names will be written when the matrix is saved.

Value

Iterable matrix object with dimension ranges x cells. When saved, the column names of the output
matrix will be in the format chr1:500-1000, where start and end coords are given in a 0-based
coordinate system.

mode options

• "insertions": Start and end coordinates are separately overlapped with each peak

• "fragments": Like "insertions", but each fragment can contribute at most 1 count to each
peak, even if both the start and end coordinates overlap

• "overlaps": Like "fragments", but an overlap is also counted if the fragment fully spans
the peak even if neither the start or end falls within the peak

Note

When calculating the matrix directly from a fragments tsv, it’s necessary to first call select_chromosomes()
in order to provide the ordering of chromosomes to expect while reading the tsv.

plot_dot Dotplot

Description

Plot feature levels per group or cluster as a grid of dots. Dots are colored by z-score normalized
average expression, and sized by percent non-zero.

https://web.archive.org/web/20210920203703/http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

plot_embedding 41

Usage

plot_dot(
source,
features,
groups,
group_order = NULL,
gene_mapping = human_gene_mapping,
colors = c("lightgrey", "#4682B4"),
return_data = FALSE,
apply_styling = TRUE

)

Arguments

source Feature x cell matrix or data.frame with features. For best results, features
should be sparse and log-normalized (e.g. run log1p() so zero raw counts map
to zero)

features Character vector of features to plot

groups Vector with one entry per cell, specifying the cell’s group

group_order Optional vector listing ordering of groups

gene_mapping An optional vector for gene name matching with match_gene_symbol().

colors Color scale for plot

return_data If true, return data from just before plotting rather than a plot.

apply_styling If false, return a plot without pretty styling applied

plot_embedding Plot UMAP or embeddings

Description

Plot one or more features by coloring cells in a UMAP plot.

Usage

plot_embedding(
source,
embedding,
features = NULL,
quantile_range = c(0.01, 0.99),
randomize_order = TRUE,
smooth = NULL,
smooth_rounds = 3,
gene_mapping = human_gene_mapping,
size = NULL,

42 plot_embedding

rasterize = FALSE,
raster_pixels = 512,
legend_continuous = c("auto", "quantile", "value"),
labels_quantile_range = TRUE,
colors_continuous = c("lightgrey", "#4682B4"),
legend_discrete = TRUE,
labels_discrete = TRUE,
colors_discrete = discrete_palette("stallion"),
return_data = FALSE,
return_plot_list = FALSE,
apply_styling = TRUE

)

Arguments

source Matrix, or data frame to pull features from, or a vector of feature values for a
single feature. For a matrix, the features must be rows.

embedding A matrix of dimensions cells x 2 with embedding coordinates

features Character vector of features to plot if source is not a vector.

quantile_range (optional) Length 2 vector giving the quantiles to clip the minimum and maxi-
mum color scale values, as fractions between 0 and 1. NULL or NA values to
skip clipping

randomize_order

If TRUE, shuffle cells to prevent overplotting biases. Can pass an integer instead
to specify a random seed to use.

smooth (optional) Sparse matrix of dimensions cells x cells with cell-cell distance weights
for smoothing.

smooth_rounds Number of multiplication rounds to apply when smoothing.

gene_mapping An optional vector for gene name matching with match_gene_symbol(). Ig-
nored if source is a data frame.

size Point size for plotting

rasterize Whether to rasterize the point drawing to speed up display in graphics programs.

raster_pixels Number of pixels to use when rasterizing. Can provide one number for square
dimensions, or two numbers for width x height.

legend_continuous

Whether to label continuous features by quantile or value. "auto" labels by quan-
tile only when all features are continuous and quantile_range is not NULL.
Quantile labeling adds text annotation listing the range of displayed values.

labels_quantile_range

Whether to add a text label with the value range of each feature when the legend
is set to quantile

colors_continuous

Vector of colors to use for continuous color palette
legend_discrete

Whether to show the legend for discrete (categorical) features.

plot_fragment_length 43

labels_discrete

Whether to add text labels at the center of each group for discrete (categorical)
features.

colors_discrete

Vector of colors to use for discrete (categorical) features.

return_data If true, return data from just before plotting rather than a plot.
return_plot_list

If TRUE, return multiple plots as a list, rather than a single plot combined using
patchwork::wrap_plots()

apply_styling If false, return a plot without pretty styling applied

Details

Smoothing:
Smoothing is performed as follows: first, the smoothing matrix is normalized so the sum of
incoming weights to every cell is 1. Then, the raw data values are repeatedly multiplied by the
smoothing matrix and re-scaled so the average value stays the same.

Value

By default, returns a ggplot2 object with all the requested features plotted in a grid. If return_data
or return_plot_list is called, the return value will match that argument.

plot_fragment_length Fragment size distribution

Description

Plot the distribution of fragment lengths, with length in basepairs on the x-axis, and proportion of
fragments on the y-axis. Typical plots will show 10-basepair periodicity, as well as humps spaced
at multiples of a nucleosome width (about 150bp).

Usage

plot_fragment_length(
fragments,
max_length = 500,
return_data = FALSE,
apply_styling = TRUE

)

Arguments

fragments Fragments object

max_length Maximum length to show on the plot

return_data If true, return data from just before plotting rather than a plot.

apply_styling If false, return a plot without pretty styling applied

44 plot_read_count_knee

Value

Numeric vector where index i contans the number of length-i fragments

plot_read_count_knee Knee plot of single cell read counts

Description

Plots read count rank vs. number of reads on a log-log scale.

Usage

plot_read_count_knee(
read_counts,
cutoff = NULL,
return_data = FALSE,
apply_styling = TRUE

)

Arguments

read_counts Vector of read counts per cell

cutoff (optional) Read cutoff to mark on the plot

return_data If true, return data from just before plotting rather than a plot.

apply_styling If false, return a plot without pretty styling applied

Details

Performs logarithmic downsampling to reduce the number of points plotted

Value

ggplot2 plot object

plot_tf_footprint 45

plot_tf_footprint Plot TF footprint

Description

Plot the footprinting around TF motif sites

Usage

plot_tf_footprint(
fragments,
motif_positions,
cell_groups = rlang::rep_along(cellNames(fragments), "all"),
flank = 250L,
smooth = 0L,
zero_based_coords = !is(genes, "GRanges"),
colors = discrete_palette("stallion"),
return_data = FALSE,
apply_styling = TRUE

)

Arguments

fragments IterableFragments object

motif_positions

Coordinate ranges for motifs (must include strand) and have constant width

cell_groups Character or factor assigning a group to each cell, in order of cellNames(fragments)

flank Number of flanking basepairs to include on either side of the motif

smooth (optional) Sparse matrix of dimensions cells x cells with cell-cell distance weights
for smoothing.

zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

return_data If true, return data from just before plotting rather than a plot.

apply_styling If false, return a plot without pretty styling applied

See Also

footprint(), plot_tss_profile()

46 plot_tss_profile

plot_tss_profile Plot TSS profile

Description

Plot the enrichmment of insertions relative to transcription start sites (TSS). Typically, this plot
shows strong enrichment of insertions near a TSS, and a small bump downstream around 220bp
downstream of the TSS for the +1 nucleosome.

Usage

plot_tss_profile(
fragments,
genes,
cell_groups = rlang::rep_along(cellNames(fragments), "all"),
flank = 2000L,
smooth = 0L,
zero_based_coords = !is(genes, "GRanges"),
colors = discrete_palette("stallion"),
return_data = FALSE,
apply_styling = TRUE

)

Arguments

fragments IterableFragments object

genes Coordinate ranges for genes (must include strand)

cell_groups Character or factor assigning a group to each cell, in order of cellNames(fragments)

flank Number of flanking basepairs to include on either side of the motif

smooth Number of bases to smooth over (rolling average)

zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

return_data If true, return data from just before plotting rather than a plot.

apply_styling If false, return a plot without pretty styling applied

See Also

footprint(), plot_tf_footprint()

plot_tss_scatter 47

plot_tss_scatter TSS Enrichment vs. Fragment Counts plot

Description

Density scatter plot with log10(fragment_count) on the x-axis and TSS enrichment on the y-axis.
This plot is most useful to select which cell barcodes in an experiment correspond to high-quality
cells

Usage

plot_tss_scatter(
atac_qc,
min_frags = NULL,
min_tss = NULL,
bins = 100,
apply_styling = TRUE

)

Arguments

atac_qc Tibble as returned by qc_scATAC(). Must have columns nFrags and TSSEnrichment

min_frags Minimum fragment count cutoff

min_tss Minimum TSS Enrichment cutoff

bins Number of bins for density calculation

apply_styling If false, return a plot without pretty styling applied

prefix_cell_names Add sample prefix to cell names

Description

Rename cells by adding a prefix to the names. Most commonly this will be a sample name. All
cells will recieve the exact text of prefix added to the beginning, so any separator characters like
"_" must be included in the given prefix. Use this prior to merging fragments from different
experiments with c() in order to help prevent cell name clashes.

Usage

prefix_cell_names(fragments, prefix)

Arguments

fragments Input fragments object.

prefix String to add as the prefix

48 qc_scATAC

Value

Fragments object with prefixed names

qc_scATAC Calculate ArchR-compatible per-cell QC statistics

Description

Calculate ArchR-compatible per-cell QC statistics

Usage

qc_scATAC(fragments, genes, blacklist)

Arguments

fragments IterableFragments object

genes Gene coordinates given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

blacklist Blacklisted regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

Details

This implementation mimics ArchR’s default parameters. For uses requiring more flexibility to
tweak default parameters, the best option is to re-implement this function with required changes.
Output columns of data.frame:

• cellName: cell name for each cell

• nFrags: number of fragments per cell

• subNucleosomal, monoNucleosomal, multiNucleosomal: number of fragments of size 1-
146bp, 147-254bp, and 255bp + respectively. equivalent to ArchR’s nMonoFrags, nDiFrags,
nMultiFrags respectively

• TSSEnrichment: AvgInsertInTSS / max(AvgInsertFlankingTSS, 0.1), where AvgInsertInTSS
is ReadsInTSS / 101 (window size), and AvgInsertFlankingTSS is ReadsFlankingTSS /
(100*2) (window size). The max(0.1) ensures that very low-read cells do not get assigned
spuriously high TSSEnrichment.

• ReadsInPromoter: Number of reads from 2000bp upstream of TSS to 101bp downstream of
TSS

• ReadsInBlacklist: Number of reads in the provided blacklist region

• ReadsInTSS: Number of reads overlapping the 101bp centered around each TSS

• ReadsFlankingTSS: Number of reads overlapping 1901-2000bp +/- each TSS

range_distance_to_nearest 49

Differences from ArchR: Note that ArchR by default uses a different set of annotations to derive
TSS sites and promoter sites. This function uses just one annotation for gene start+end sites, so
must be called twice to exactly re-calculate the ArchR QC stats.

ArchR’s PromoterRatio and BlacklistRatio are not included in the output, as they can be
easily calculated from ReadsInPromoter / nFrags and ReadsInBlacklist / nFrags. Similarly,
ArchR’s NucleosomeRatio can be calculated as (monoNucleosomal + multiNucleosomal) / subNucleosomal.

Value

data.frame with QC data

range_distance_to_nearest

Find signed distance to nearest genomic ranges

Description

Given a set of genomic ranges, find the distance to the nearest neighbors both upstream and down-
stream.

Usage

range_distance_to_nearest(
ranges,
addArchRBug = FALSE,
zero_based_coords = !is(ranges, "GRanges")

)

Arguments

ranges Genomic regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand

addArchRBug boolean to reproduce ArchR’s bug that incorrectly handles nested genes
zero_based_coords

If true, coordinates start and 0 and the end coordinate is not included in the
range. If false, coordinates start at 1 and the end coordinate is included in the
range

Value

A 2-column data.frame with columns upstream and downstream, containing the distances to the
nearest neighbor in the respective directions. For ranges on + or * strand, distance is calculated as:

• upstream = max(start(range) - end(upstreamNeighbor), 0)

50 read_bed

• downstream = max(start(downstreamNeighbor) - end(range), 0)

For ranges on - strand, the definition of upstream and downstream is flipped. Note that this defi-
nition of distance is one off from GenomicRanges::distance(), as ranges that neighbor but don’t
overlap are given a distance of 1 rather than 0.

read_bed Read a bed file into a data frame

Description

Bed files can contain peak or blacklist annotations. These utilities help read thos annotations

Usage

read_bed(
path,
additional_columns = character(0),
backup_url = NULL,
timeout = 300

)

read_encode_blacklist(
dir,
genome = c("hg38", "mm10", "hg19", "dm6", "dm3", "ce11", "ce10"),
timeout = 300

)

Arguments

path Path to file (or desired save location if backup_url is used)
additional_columns

Names for additional columns in the bed file

backup_url If path does not exist, provides a URL to download the gtf from

timeout Maximum time in seconds to wait for download from backup_url

dir Output directory to cache the downloaded gtf file

genome genome name

Details

read_bed

Read a bed file from disk or a url.

read_encode_blacklist

Downloads the Boyle Lab blacklist, as described in https://doi.org/10.1038/s41598-019-45839-z

https://doi.org/10.1038/s41598-019-45839-z

read_gtf 51

Value

Data frame with coordinates using the 0-based convention.

See Also

read_gtf(), read_gencode_genes()

read_gtf Read GTF gene annotations

Description

Read gene annotations from gtf format into a data frame. The source can be a URL, a gtf file on
disk, or a gencode release version.

Usage

read_gtf(
path,
attributes = c("gene_id"),
tags = character(0),
features = c("gene"),
keep_attribute_column = FALSE,
backup_url = NULL,
timeout = 300

)

read_gencode_genes(
dir,
release = "latest",
annotation_set = c("basic", "comprehensive"),
gene_type = "lncRNA|protein_coding|IG_.*_gene|TR_.*_gene",
attributes = c("gene_id", "gene_type", "gene_name"),
tags = character(0),
features = c("gene"),
timeout = 300

)

read_gencode_transcripts(
dir,
release = "latest",
transcript_choice = c("MANE_Select", "Ensembl_Canonical", "all"),
annotation_set = c("basic", "comprehensive"),
gene_type = "lncRNA|protein_coding|IG_.*_gene|TR_.*_gene",
attributes = c("gene_id", "gene_type", "gene_name", "transcript_id"),
features = c("transcript", "exon"),
timeout = 300

)

52 read_gtf

Arguments

path Path to file (or desired save location if backup_url is used)

attributes Vector of GTF attribute names to parse out as columns

tags Vector of tags to parse out as boolean presence/absence

features List of features types to keep from the GTF (e.g. gene, transcript, exon, intron)
keep_attribute_column

Boolean for whether to preserve the raw attribute text column

backup_url If path does not exist, provides a URL to download the gtf from

timeout Maximum time in seconds to wait for download from backup_url

dir Output directory to cache the downloaded gtf file

release release version (prefix with M for mouse versions). For most recent version, use
"latest" or "latest_mouse"

annotation_set Either "basic" or "comprehensive" annotation sets (see details section).

gene_type Regular expression with which gene types to keep. Defaults to protein_coding,
lncRNA, and IG/TR genes

transcript_choice

Method for selecting representative transcripts. Choices are:

• MANE_Select: human-only, most conservative
• Ensembl_Canonical: human+mouse, superset of MANE_Select for human
• all: Preserve all transcript models (not recommended for plotting)

Details

read_gtf
Read gtf from a file or URL

read_gencode_genes
Read gene annotations directly from GENCODE. The file name will vary depending on the release
and annotation set requested, but will be of the format gencode.v42.annotation.gtf.gz. GEN-
CODE currently recommends the basic set: https://www.gencodegenes.org/human/. In release
42, both the comprehensive and basic sets had identical gene-level annotations, but the comprehen-
sive set had additional transcript variants annotated.

read_gencode_transcripts
Read transcript models from GENCODE, for use with trackplot_gene()

Value

Data frame with coordinates using the 0-based convention. Columns are:

• chr

• source

• feature

• start

https://www.gencodegenes.org/human/

read_ucsc_chrom_sizes 53

• end

• score

• strand

• frame

• attributes (optional; named according to listed attributes)

• tags (named according to listed tags)

See Also

read_bed(), read_encode_blacklist()

read_ucsc_chrom_sizes Read UCSC chromosome sizes

Description

Read chromosome sizes from UCSC and return as a tibble with one row per chromosome. The
underlying data is pulled from here: https://hgdownload.soe.ucsc.edu/downloads.html

Usage

read_ucsc_chrom_sizes(
dir,
genome = c("hg38", "mm39", "mm10", "mm9", "hg19"),
keep_chromosomes = "chr[0-9]+|chrX|chrY",
timeout = 300

)

regress_out Regress out unwanted variation

Description

Regress out the effects of confounding variables using a linear least squares regression model.

Usage

regress_out(mat, latent_data, prediction_axis = c("row", "col"))

https://hgdownload.soe.ucsc.edu/downloads.html

54 rotate_x_labels

Arguments

mat Input IterableMatrix

latent_data Data to regress out, as a data.frame where each column is a variable to regress
out.

prediction_axis

Which axis corresponds to prediction outputs from the linear models (e.g. the
gene axis in typical single cell analysis). Options include "row" (default) and
"col".

Details

Conceptually, regress_out calculates a linear least squares best fit model for each row of the
matrix. (Or column if prediction_axis is "col"). The input data for each regression model are
the columns of latent_data, and each model tries to predict the values in the corresponding row (or
column) of mat. After fitting each model, regress_out will subtract the model predictions from the
input values, aiming to only retain effects that are not explained by the variables in latent_data.

These models can be fit efficiently since they all share the same input data and so most of the
calculations for the closed-form best fit solution are shared. A QR factorization of the model matrix
and a dense matrix-vector multiply are sufficient to fully calculate the residual values.

Efficiency considerations: As the output matrix is dense rather than sparse, mean and variance cal-
culations may run comparatively slowly. However, PCA and matrix/vector multiply operations can
be performed at nearly the same cost as the input matrix due to mathematical simplifications. Mem-
ory usage scales with n_features * ((nrow(mat) + ncol(mat)). Generally, n_features ==
ncol(latent_data), but for categorical variables in latent_data, each category will be expanded
into its own indicator variable. Memory usage will therefore be higher when using categorical input
variables with many (i.e. >100) distinct values.

Value

IterableMatrix

rotate_x_labels Rotate ggplot x axis labels

Description

Rotate ggplot x axis labels

Usage

rotate_x_labels(degrees = 45)

Arguments

degrees Number of degrees to rotate by

sctransform_pearson 55

sctransform_pearson SCTransform Pearson Residuals

Description

Calculate pearson residuals of a negative binomial sctransform model. Normalized values are calcu-
lated as (X - mu) / sqrt(mu + mu^2/theta). mu is calculated as cell_read_counts * gene_beta.

Usage

sctransform_pearson(
mat,
gene_theta,
gene_beta,
cell_read_counts,
min_var = -Inf,
clip_range = c(-10, 10),
columns_are_cells = TRUE,
slow = FALSE

)

Arguments

mat IterableMatrix (raw counts)

gene_theta Vector of per-gene thetas (overdispersion values)

gene_beta Vector of per-gene betas (expression level values)
cell_read_counts

Vector of total reads per (umi count for RNA)

min_var Minimum value for clipping variance

clip_range Length 2 vector of min and max clipping range
columns_are_cells

Whether the columns of the matrix correspond to cells (default) or genes

slow If TRUE, use a 10x slower but more precise implementation (default FALSE)

Details

The parameterization used is somewhat simplified compared to the original SCTransform paper, in
particular it uses a linear-scale rather than log-scale to represent the cell_read_counts and gene_beta
variables. It also does not support the addition of arbitrary cell metadata (e.g. batch) to add to the
negative binomial regression.

Value

IterableMatrix

56 select_chromosomes

select_cells Subset, translate, or reorder cell IDs

Description

Subset, translate, or reorder cell IDs

Usage

select_cells(fragments, cell_selection)

Arguments

fragments Input fragments object

cell_selection List of chromosme IDs (numeric), or names (character). The output cell ID n
will be taken from the input cell with ID/name cell_selection[n].

select_chromosomes Subset, translate, or reorder chromosome IDs

Description

Subset, translate, or reorder chromosome IDs

Usage

select_chromosomes(fragments, chromosome_selection)

Arguments

fragments Input fragments object

chromosome_selection

List of chromosme IDs (numeric), or names (character). The output chromo-
some ID n will be taken from the input fragments chromosome with ID/name
chromosome_selection[n].

select_regions 57

select_regions Subset fragments by genomic region

Description

Fragments can be subset based on overlapping (or not overlapping) a set of regions

Usage

select_regions(
fragments,
ranges,
invert_selection = FALSE,
zero_based_coords = !is(ranges, "GRanges")

)

Arguments

fragments Input fragments object.

ranges Peaks/ranges to overlap, given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
invert_selection

If TRUE, select fragments not overlapping selected regions instead of only frag-
ments overlapping the selected regions.

zero_based_coords

Whether to convert the ranges from a 1-based end-inclusive coordinate system
to a 0-based end-exclusive coordinate system. Defaults to true for GRanges and
false for other formats (see this archived UCSC blogpost)

Value

Fragments object filtered according to the selected regions

set_trackplot_label Adjust trackplot properties

Description

Adjust labels and heights on trackplots. Labels are set as facet labels in ggplot2, and heights are
additional properties read by trackplot_combine() to determine relative height of input plots.

https://web.archive.org/web/20210920203703/http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

58 shift_fragments

Usage

set_trackplot_label(plot, labels)

set_trackplot_height(plot, height)

get_trackplot_height(plot)

Arguments

plot ggplot object

labels character vector of labels – must match existing number of facets in plot

height New height. If numeric, adjusts relative height. If ggplot2::unit or grid::unit
sets absolute height in specified units. "null" units are interpreted as relative
height.

Value

set_trackplot_label: ggplot object with adjusted facet labels

set_trackplot_height: ggplot object with adjusted trackplot height

get_trackplot_height: ggplot2::unit object with height setting

shift_fragments Shift start or end coordinates

Description

Shifts start or end of fragments by a fixed amount, which can be useful to correct the Tn5 offset.

Usage

shift_fragments(fragments, shift_start = 0L, shift_end = 0L)

Arguments

fragments Input fragments object

shift_start How many basepairs to shift the start coords

shift_end How many basepairs to shift the end coords

Details

The correct Tn5 offset is +/- 4bp since the Tn5 cut sites on opposite strands are offset by 9bp.
However, +4/-5 bp is often applied to bed-format files, since the end coordinate in bed files is 1
past the last basepair of the sequenced DNA fragment. This results in a bed-like format except with
inclusive end coordinates.

subset_lengths 59

Value

Shifted fragments object

subset_lengths Subset fragments by length

Description

Subset fragments by length

Usage

subset_lengths(fragments, min_len = 0L, max_len = NA_integer_)

Arguments

fragments Input fragments object

min_len Minimum bases in fragment (inclusive)

max_len Maximum bases in fragment (inclusive)

Details

Fragment length is calculated as end-start

Value

Fragments object

svds Calculate svds

Description

Use the C++ Spectra solver (same as RSpectra package), in order to compute the largest k val-
ues and corresponding singular vectors. Empirically, memory usage is much lower than using
irlba::irlba(), likely due to avoiding R garbage creation while solving due to the pure-C++
solver. This documentation is a slightly-edited version of the RSpectra::svds() documentation.

Usage

svds(A, k, nu = k, nv = k, opts = list(), threads=0L, ...)

60 svds

Arguments

A The matrix whose truncated SVD is to be computed.

k Number of singular values requested.

nu Number of right singular vectors to be computed. This must be between 0 and
’k’. (Must be equal to ’k’ for BPCells IterableMatrix)

opts Control parameters related to computing algorithm. See Details below

threads Control threads to use calculating mat-vec producs (BPCells specific)

Details

When RSpectra is installed, this function will just add a method to RSpectra::svds() for the
IterableMatrix class.

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but
with greater memory use. ncv must be satisfy k < ncv ≤ p where p = min(m, n). Default is
min(p, max(2*k+1, 20)).

tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

center Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector c is
supplied, then SVD is computed on the matrix A − 1c′, in an implicit way without actually
forming this matrix. center = TRUE has the same effect as center = colMeans(A). Default is
FALSE. Ignored in BPCells

scale Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector s is supplied,
then SVD is computed on the matrix (A − 1c′)S, where c is the centering vector and S =
diag(1/s). If scale = TRUE, then the vector s is computed as the column norm of A − 1c′.
Default is FALSE. Ignored in BPCells

Value

A list with the following components:

d A vector of the computed singular values.

u An m by nu matrix whose columns contain the left singular vectors. If nu == 0,
NULL will be returned.

v An n by nv matrix whose columns contain the right singular vectors. If nv == 0,
NULL will be returned.

nconv Number of converged singular values.

niter Number of iterations used.

nops Number of matrix-vector multiplications used.

References

Qiu Y, Mei J (2022). RSpectra: Solvers for Large-Scale Eigenvalue and SVD Problems. R package
version 0.16-1, https://CRAN.R-project.org/package=RSpectra.

https://CRAN.R-project.org/package=RSpectra

tile_matrix 61

tile_matrix Calculate ranges x cells tile overlap matrix

Description

Calculate ranges x cells tile overlap matrix

Usage

tile_matrix(
fragments,
ranges,
mode = c("insertions", "fragments"),
zero_based_coords = !is(ranges, "GRanges"),
explicit_tile_names = FALSE

)

Arguments

fragments Input fragments object
ranges Tiled regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")

for details on format and coordinate systems. Required attributes:
• chr, start, end: genomic position
• tile_width: Size of each tile in this region in basepairs

Must be non-overlapping and sorted by (chr, start), with chromosomes ordered
according to the chromosome names of fragments

mode Mode for counting tile overlaps. (See "value" section for more detail)
zero_based_coords

Whether to convert the ranges from a 1-based end-inclusive coordinate system
to a 0-based end-exclusive coordinate system. Defaults to true for GRanges and
false for other formats (see this archived UCSC blogpost)

explicit_tile_names

Boolean for whether to add rownames to the output matrix in format e.g chr1:500-
1000, where start and end coords are given in a 0-based coordinate system. For
whole-genome Tile matrices the names will take ~5 seconds to generate and take
up 400MB of memory. Note that either way, tile names will be written when the
matrix is saved.

Value

Iterable matrix object with dimension ranges x cells. When saved, the column names will be in the
format chr1:500-1000, where start and end coords are given in a 0-based coordinate system.

mode options

• "insertions": Start and end coordinates are separately overlapped with each tile
• "fragments": Like "insertions", but each fragment can contribute at most 1 count to each

tile, even if both the start and end coordinates overlap

https://web.archive.org/web/20210920203703/http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

62 trackplot_combine

Note

When calculating the matrix directly from a fragments tsv, it’s necessary to first call select_chromosomes()
in order to provide the ordering of chromosomes to expect while reading the tsv.

trackplot_combine Combine track plots

Description

Combines multiple track plots of the same region into a single grid. Uses the patchwork package
to perform the alignment.

Usage

trackplot_combine(
tracks,
side_plot = NULL,
title = NULL,
side_plot_width = 0.3

)

Arguments

tracks List of tracks in order from top to bottom, generally ggplots as output from the
other trackplot_*() functions.

side_plot Optional plot to align to the right (e.g. RNA expression per cluster). Will be
aligned to a trackplot_coverage() output if present, or else the first generic
ggplot in the alignment. Should be in horizontal orientation and in the same
cluster ordering as the coverage plots.

title Text for overarching title of the plot
side_plot_width

Fraction of width that should be used for the side plot relative to the main track
area

Value

A plot object with aligned genome plots. Each aligned row has the text label, y-axis, and plot body.
The relative height of each row is given by heights. A shared title and x-axis are put at the top.

See Also

trackplot_coverage(), trackplot_gene(), trackplot_loop(), trackplot_scalebar()

trackplot_coverage 63

trackplot_coverage Pseudobulk coverage trackplot

Description

Plot a pseudobulk genome track, showing the number of fragment insertions across a region for
each cell type or group.

Usage

trackplot_coverage(
fragments,
region,
groups,
cell_read_counts,
group_order = NULL,
bins = 500,
clip_quantile = 0.999,
colors = discrete_palette("stallion"),
legend_label = "group",
zero_based_coords = !is(region, "GRanges"),
return_data = FALSE

)

Arguments

fragments Fragments object
region Region to plot, e.g. output from gene_region(). String of format "chr1:100-

200", or list/data.frame/GRanges of length 1 specifying chr, start, end. See
help("genomic-ranges-like") for details

groups Vector with one entry per cell, specifying the cell’s group
cell_read_counts

Numeric vector of read counts for each cell (used for normalization)
group_order Optional vector listing ordering of groups
bins Number of bins to plot across the region
clip_quantile (optional) Quantile of values for clipping y-axis limits. Default of 0.999 will

crop out just the most extreme outliers across the region. NULL to disable
clipping

colors Character vector of color values (optionally named by group)
legend_label Custom label to put on the legend
zero_based_coords

Whether to convert the ranges from a 1-based end-inclusive coordinate system
to a 0-based end-exclusive coordinate system. Defaults to true for GRanges and
false for other formats (see this archived UCSC blogpost)

return_data If true, return data from just before plotting rather than a plot.
scale_bar Whether to include a scale bar in the top track (TRUE or FALSE)

https://web.archive.org/web/20210920203703/http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

64 trackplot_gene

Value

Returns a combined plot of pseudobulk genome tracks. For compatability with draw_trackplot_grid(),
the extra attribute $patches$labels will be added to specify the labels for each track. If return_data
or return_plot_list is TRUE, the return value will be modified accordingly.

See Also

trackplot_combine(), trackplot_gene(), trackplot_loop(), trackplot_scalebar()

trackplot_gene Plot transcript models

Description

Plot transcript models

Usage

trackplot_gene(
transcripts,
region,
exon_size = 2.5,
gene_size = 0.5,
label_size = 11 * 0.8/ggplot2::.pt,
track_label = "Genes",
return_data = FALSE

)

Arguments

transcripts Transcipt features given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position
• strand: +/- or TRUE/FALSE for positive or negative strand
• feature: Only entries marked as "transcript" or "exon" will be consid-

ered
• gene_name: Symbol or gene ID to display
• transcript_id: Transcritp identifier to link transcripts and exons

Usually given as the output from read_gencode_transcripts()

region Region to plot, e.g. output from gene_region(). String of format "chr1:100-
200", or list/data.frame/GRanges of length 1 specifying chr, start, end. See
help("genomic-ranges-like") for details

exon_size size for exon lines in units of mm

gene_size size for intron/gene lines in units of mm

trackplot_genome_annotation 65

label_size size for transcript labels in units of mm

return_data If true, return data from just before plotting rather than a plot.

labels Character vector with labels for each item in transcripts. NA for items that
should not be labeled

transcript_size

size for transcript lines in units of mm

Value

Plot of gene locations

See Also

trackplot_combine(), trackplot_coverage(), trackplot_loop(), trackplot_scalebar()

trackplot_genome_annotation

Plot range-based annotation tracks (e.g. peaks)

Description

Plot range-based annotation tracks (e.g. peaks)

Usage

trackplot_genome_annotation(
loci,
region,
color_by = NULL,
colors = NULL,
label_by = NULL,
label_size = 11 * 0.8/ggplot2::.pt,
show_strand = FALSE,
annotation_size = 2.5,
track_label = "Peaks",
return_data = FALSE

)

Arguments

loci Genomic loci given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

region Region to plot, e.g. output from gene_region(). String of format "chr1:100-
200", or list/data.frame/GRanges of length 1 specifying chr, start, end. See
help("genomic-ranges-like") for details

66 trackplot_loop

color_by Name of a metadata column in loci to use for coloring, or a data vector with
same length as loci. Column must be numeric or convertible to a factor.

colors Vector of hex color codes to use for the color scale. For numeric color_by
data, this is passed to ggplot2::scale_color_gradientn(), otherwise it is
interpreted as a discrete color palette in ggplot2::scale_color_manual()

label_by Name of a metadata column in loci to use for labeling, or a data vector with
same length as loci. Column must hold string data.

label_size size for labels in units of mm

show_strand If TRUE, show strand direction as arrows
annotation_size

size for annotation lines in mm

return_data If true, return data from just before plotting rather than a plot.

Value

Plot of genomic loci if return_data is FALSE, otherwise returns the data frame used to generate the
plot

See Also

trackplot_combine(), trackplot_coverage(), trackplot_loop(), trackplot_scalebar(),
trackplot_gene()

trackplot_loop Plot loops

Description

Plot loops

Usage

trackplot_loop(
loops,
region,
color_by = NULL,
colors = NULL,
allow_truncated = TRUE,
curvature = 0.75,
track_label = "Links",
return_data = FALSE

)

trackplot_scalebar 67

Arguments

loops Genomic regions given as GRanges, data.frame, or list. See help("genomic-ranges-like")
for details on format and coordinate systems. Required attributes:

• chr, start, end: genomic position

region Region to plot, e.g. output from gene_region(). String of format "chr1:100-
200", or list/data.frame/GRanges of length 1 specifying chr, start, end. See
help("genomic-ranges-like") for details

color_by Name of a metadata column in loops to use for coloring, or a data vector with
same length as loci. Column must be numeric or convertible to a factor.

colors Vector of hex color codes to use for the color scale. For numeric color_by
data, this is passed to ggplot2::scale_color_gradientn(), otherwise it is
interpreted as a discrete color palette in ggplot2::scale_color_manual()

allow_truncated

If FALSE, remove any loops that are not fully contained within region

curvature Curvature value between 0 and 1. 1 is a 180-degree arc, and 0 is flat lines.

return_data If true, return data from just before plotting rather than a plot.

Value

Plot of loops connecting genomic coordinates

See Also

trackplot_combine(), trackplot_coverage(), trackplot_gene(), trackplot_scalebar(),
trackplot_genome_annotation()

trackplot_scalebar Plot scale bar

Description

Plots a human-readable scale bar and coordinates of the region being plotted

Usage

trackplot_scalebar(region, font_pt = 11)

Arguments

region Region to plot, e.g. output from gene_region(). String of format "chr1:100-
200", or list/data.frame/GRanges of length 1 specifying chr, start, end. See
help("genomic-ranges-like") for details

font_pt Font size for scale bar labels in units of pt.

68 transpose_storage_order

Value

Plot with coordinates and scalebar for plotted genomic region

See Also

trackplot_combine(), trackplot_coverage(), trackplot_gene(), trackplot_loop()

transpose_storage_order

Transpose the storage order for a matrix

Description

Transpose the storage order for a matrix

Usage

transpose_storage_order(
matrix,
outdir = tempfile("transpose"),
tmpdir = tempdir(),
load_bytes = 4194304L,
sort_bytes = 1073741824L

)

Arguments

matrix Input matrix

outdir Directory to store the output

tmpdir Temporary directory to use for intermediate storage

load_bytes The minimum contiguous load size during the merge sort passes

sort_bytes The amount of memory to allocate for re-sorting chunks of entries

Details

This re-sorts the entries of a matrix to change the storage order from row-major to col-major. For
large matrices, this can be slow – around 2 minutes to transpose a 500k cell RNA-seq matrix The
default load_bytes (4MiB) and sort_bytes (1GiB) parameters allow ~85GB of data to be sorted with
two passes through the data, and ~7.3TB of data to be sorted in three passes through the data.

Value

MatrixDir object with a copy of the input matrix, but the storage order flipped

write_fragments_memory 69

write_fragments_memory

Read/write BPCells fragment objects

Description

BPCells fragments can be read/written in compressed (bitpacked) or uncompressed form in a variety
of storage locations: in memory (as an R object), in an hdf5 file, or in a directory on disk (containing
binary files).

Usage

write_fragments_memory(fragments, compress = TRUE)

write_fragments_dir(
fragments,
dir,
compress = TRUE,
buffer_size = 1024L,
overwrite = FALSE

)

open_fragments_dir(dir, buffer_size = 1024L)

write_fragments_hdf5(
fragments,
path,
group = "fragments",
compress = TRUE,
buffer_size = 8192L,
chunk_size = 1024L,
overwrite = FALSE,
gzip_level = 0L

)

open_fragments_hdf5(path, group = "fragments", buffer_size = 16384L)

Arguments

fragments Input fragments object

compress Whether or not to compress the data. With compression, storage size is be about
half the size of a gzip-compressed 10x fragments file.

dir Directory to read/write the data from

buffer_size For performance tuning only. The number of items to be bufferred in memory
before calling writes to disk.

70 write_insertion_bedgraph

overwrite If TRUE, write to a temp dir then overwrite existing data. Alternatively, pass a
temp path as a string to customize the temp dir location.

path Path to the hdf5 file on disk

group The group within the hdf5 file to write the data to. If writing to an existing hdf5
file this group must not already be in use

chunk_size For performance tuning only. The chunk size used for the HDF5 array storage.

gzip_level Gzip compression level. Default is 0 (no compression). This is recommended
when both compression and compatibility with outside programs is required.
Otherwise, using compress=TRUE is recommended as it is >10x faster with
often similar compression levels.

Details

Saving in a directory on disk is a good default for local analysis, as it provides the best I/O per-
formance and lowest memory usage. The HDF5 format allows saving within existing hdf5 files
to group data together, and the in memory format provides the fastest performance in the event
memory usage is unimportant.

Value

Fragment object

write_insertion_bedgraph

Write insertion counts to bedgraph file

Description

Write insertion counts data for one or more pseudobulks to bedgraph format. This reports the total
number insertions at each basepair for each group listed in cell_groups.

Usage

write_insertion_bedgraph(
fragments,
path,
cell_groups = NULL,
insertion_mode = c("both", "start_only", "end_only")

)

Arguments

fragments IterableFragments object

path Path(s) to save bedgraph to, optionally ending in ".gz" to add gzip compression.
If cell_groups is provided, path must be a named character vector, with one
name for each level in cell_groups

write_matrix_memory 71

cell_groups Character or factor assigning a group to each cell, in order of cellNames(fragments)

insertion_mode Which fragment ends to use for insertion counts calculation. One of "both",
"start_only", or "end_only"

write_matrix_memory Read/write sparse matrices

Description

BPCells matrices are stored in sparse format, meaning only the non-zero entries are stored. Matrices
can store integer counts data or decimal numbers (float or double). See details for more information.

Usage

write_matrix_memory(mat, compress = TRUE)

write_matrix_dir(
mat,
dir,
compress = TRUE,
buffer_size = 8192L,
overwrite = FALSE

)

open_matrix_dir(dir, buffer_size = 8192L)

write_matrix_hdf5(
mat,
path,
group,
compress = TRUE,
buffer_size = 8192L,
chunk_size = 1024L,
overwrite = FALSE,
gzip_level = 0L

)

open_matrix_hdf5(path, group, buffer_size = 16384L)

Arguments

compress Whether or not to compress the data.

dir Directory to save the data into

buffer_size For performance tuning only. The number of items to be buffered in memory
before calling writes to disk.

72 write_matrix_memory

overwrite If TRUE, write to a temp dir then overwrite existing data. Alternatively, pass a
temp path as a string to customize the temp dir location.

path Path to the hdf5 file on disk

group The group within the hdf5 file to write the data to. If writing to an existing hdf5
file this group must not already be in use

chunk_size For performance tuning only. The chunk size used for the HDF5 array storage.

gzip_level Gzip compression level. Default is 0 (no compression). This is recommended
when both compression and compatibility with outside programs is required.
Otherwise, using compress=TRUE is recommended as it is >10x faster with
often similar compression levels.

matrix Input matrix, either IterableMatrix or dgCMatrix

Details

Storage locations:
Matrices can be stored in a directory on disk, in memory, or in an HDF5 file. Saving in a di-
rectory on disk is a good default for local analysis, as it provides the best I/O performance and
lowest memory usage. The HDF5 format allows saving within existing hdf5 files to group data
together, and the in memory format provides the fastest performance in the event memory usage
is unimportant.

Bitpacking Compression:
For typical RNA counts matrices holding integer counts, this bitpacking compression will result in
6-8x less space than an R dgCMatrix, and 4-6x smaller than a scipy csc_matrix. The compression
will be more effective when the count values in the matrix are small, and when the rows of the
matrix are sorted by rowMeans. In tests on RNA-seq data optimal ordering could save up to
40% of storage space. On non-integer data only the row indices are compressed, not the values
themselves so space savings will be smaller.
For non-integer data matrices, bitpacking compression is much less effective, as it can only be
applied to the indexes of each entry but not the values. There will still be some space savings, but
far less than for counts matrices.

Value

BPCells matrix object

Index

∗ datasets
human_gene_mapping, 20

*,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

+,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

-,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

/,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

<,numeric,IterableMatrix-method
(IterableMatrix-methods), 23

<=,numeric,IterableMatrix-method
(IterableMatrix-methods), 23

>,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

>=,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

%*%,IterableMatrix,matrix-method
(IterableMatrix-methods), 23

^,IterableMatrix,numeric-method
(IterableMatrix-methods), 23

add_cols (add_rows), 3
add_rows, 3
all_matrix_inputs, 4
all_matrix_inputs<-

(all_matrix_inputs), 4
apply_by_col (apply_by_row), 4
apply_by_row, 4

binarize, 5

call_peaks_tile, 6
canonical_gene_symbol

(match_gene_symbol), 30
cellNames (IterableFragments-methods),

22
cellNames<-

(IterableFragments-methods), 22

checksum, 8
chrNames (IterableFragments-methods), 22
chrNames<- (IterableFragments-methods),

22
cluster_graph_leiden, 9
cluster_graph_louvain

(cluster_graph_leiden), 9
cluster_graph_seurat

(cluster_graph_leiden), 9
cluster_membership_matrix, 9
collect_features, 10
colMaxs (IterableMatrix-methods), 23
colMeans,IterableMatrix-method

(IterableMatrix-methods), 23
colSums,IterableMatrix-method

(IterableMatrix-methods), 23
colVars (IterableMatrix-methods), 23
continuous_palette (discrete_palette),

12
convert_matrix_type, 11
convert_to_fragments, 11

discrete_palette, 12

expm1,IterableMatrix-method
(IterableMatrix-methods), 23

expm1_slow (IterableMatrix-methods), 23
extend_ranges, 13

footprint, 14
fragments_identical, 15

gene_region, 15
gene_score_archr

(gene_score_weights_archr), 17
gene_score_tiles_archr, 16
gene_score_weights_archr, 17
genomic-ranges, 13, 16
genomic-ranges-like, 11, 19
get_trackplot_height

(set_trackplot_label), 57

73

74 INDEX

human_gene_mapping, 20

import_matrix_market, 21
import_matrix_market_10x

(import_matrix_market), 21
IterableFragments-methods, 22
IterableMatrix-methods, 23

knn_annoy (knn_hnsw), 27
knn_hnsw, 27
knn_to_geodesic_graph (knn_to_graph), 28
knn_to_graph, 28
knn_to_snn_graph (knn_to_graph), 28

log1p,IterableMatrix-method
(IterableMatrix-methods), 23

log1p_slow (IterableMatrix-methods), 23

marker_features, 29
match_gene_symbol, 30
matrix_R_conversion, 31
matrix_stats, 31
matrix_type (IterableMatrix-methods), 23
merge_cells, 32
merge_peaks_iterative, 33
min_by_col (min_scalar), 33
min_by_row (min_scalar), 33
min_scalar, 33
mouse_gene_mapping

(human_gene_mapping), 20
multiply_cols (add_rows), 3
multiply_rows (add_rows), 3

normalize_ranges, 34
nucleosome_counts, 35

open_fragments_10x, 35
open_fragments_dir

(write_fragments_memory), 69
open_fragments_hdf5

(write_fragments_memory), 69
open_matrix_10x_hdf5, 36
open_matrix_anndata_hdf5, 38
open_matrix_dir (write_matrix_memory),

71
open_matrix_hdf5 (write_matrix_memory),

71
order_ranges, 39

peak_matrix, 39

plot_dot, 40
plot_embedding, 41
plot_fragment_length, 43
plot_read_count_knee, 44
plot_tf_footprint, 45
plot_tss_profile, 46
plot_tss_scatter, 47
prefix_cell_names, 47

qc_scATAC, 48

range_distance_to_nearest, 49
read_bed, 50
read_bed(), 53
read_encode_blacklist (read_bed), 50
read_encode_blacklist(), 53
read_gencode_genes (read_gtf), 51
read_gencode_genes(), 51
read_gencode_transcripts (read_gtf), 51
read_gtf, 51
read_gtf(), 51
read_ucsc_chrom_sizes, 53
regress_out, 53
rotate_x_labels, 54
round,IterableMatrix-method

(IterableMatrix-methods), 23
rowMaxs (IterableMatrix-methods), 23
rowMeans,IterableMatrix-method

(IterableMatrix-methods), 23
rowSums,IterableMatrix-method

(IterableMatrix-methods), 23
rowVars (IterableMatrix-methods), 23

sctransform_pearson, 55
select_cells, 56
select_chromosomes, 56
select_regions, 57
set_trackplot_height

(set_trackplot_label), 57
set_trackplot_label, 57
shift_fragments, 58
show,IterableFragments-method

(IterableFragments-methods), 22
show,IterableMatrix-method

(IterableMatrix-methods), 23
storage_order (IterableMatrix-methods),

23
subset_lengths, 59
svds, 59

INDEX 75

t,IterableMatrix-method
(IterableMatrix-methods), 23

tile_matrix, 61
trackplot_combine, 62
trackplot_coverage, 63
trackplot_gene, 64
trackplot_genome_annotation, 65
trackplot_loop, 66
trackplot_scalebar, 67
transpose_storage_order, 68

write_fragments_10x
(open_fragments_10x), 35

write_fragments_dir
(write_fragments_memory), 69

write_fragments_hdf5
(write_fragments_memory), 69

write_fragments_memory, 69
write_insertion_bedgraph, 70
write_matrix_10x_hdf5

(open_matrix_10x_hdf5), 36
write_matrix_anndata_hdf5

(open_matrix_anndata_hdf5), 38
write_matrix_dir (write_matrix_memory),

71
write_matrix_hdf5

(write_matrix_memory), 71
write_matrix_memory, 71

	add_rows
	all_matrix_inputs
	apply_by_row
	binarize
	call_peaks_tile
	checksum
	cluster_graph_leiden
	cluster_membership_matrix
	collect_features
	convert_matrix_type
	convert_to_fragments
	discrete_palette
	extend_ranges
	footprint
	fragments_identical
	gene_region
	gene_score_tiles_archr
	gene_score_weights_archr
	genomic-ranges-like
	human_gene_mapping
	import_matrix_market
	IterableFragments-methods
	IterableMatrix-methods
	knn_hnsw
	knn_to_graph
	marker_features
	match_gene_symbol
	matrix_R_conversion
	matrix_stats
	merge_cells
	merge_peaks_iterative
	min_scalar
	normalize_ranges
	nucleosome_counts
	open_fragments_10x
	open_matrix_10x_hdf5
	open_matrix_anndata_hdf5
	order_ranges
	peak_matrix
	plot_dot
	plot_embedding
	plot_fragment_length
	plot_read_count_knee
	plot_tf_footprint
	plot_tss_profile
	plot_tss_scatter
	prefix_cell_names
	qc_scATAC
	range_distance_to_nearest
	read_bed
	read_gtf
	read_ucsc_chrom_sizes
	regress_out
	rotate_x_labels
	sctransform_pearson
	select_cells
	select_chromosomes
	select_regions
	set_trackplot_label
	shift_fragments
	subset_lengths
	svds
	tile_matrix
	trackplot_combine
	trackplot_coverage
	trackplot_gene
	trackplot_genome_annotation
	trackplot_loop
	trackplot_scalebar
	transpose_storage_order
	write_fragments_memory
	write_insertion_bedgraph
	write_matrix_memory
	Index

